Let $f(x) = {\cos ^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right) + {\sin ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$ then the value of $f(1) + f(2)$, is -
$-\pi$
$0$
$\pi$
$2\pi$
Domain of $f (x)$ = $\sqrt {{{\log }_2}\left( {\frac{{10x - 4}}{{4 - {x^2}}}} \right) - 1} $ , is
Let $f : R \rightarrow R$ be a continuous function such that $f(3 x)-f(x)=x$. If $f(8)=7$, then $f(14)$ is equal to.
Show that the Modulus Function $f : R \rightarrow R$ given by $(x)=|x|$, is neither one - one nor onto, where $|x|$ is $x$, if $x$ is positive or $0$ and $| X |$ is $- x$, if $x$ is negative.
The graph of the function $y = f(x)$ is symmetrical about the line $x = 2$, then
Which of the following is function